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Emergent global oscillations in heterogeneous excitable media: The example of pancreaticb cells

Julyan H. E. Cartwright*
Laboratono de Estudios Cristalogra´ficos, IACT (CSIC-UGR), E-18071 Granada, Spain

~Received 31 March 1999; revised manuscript received 18 January 2000!

Using the standard van der Pol–FitzHugh–Nagumo excitable medium model, I demonstrate a generic
mechanism, diversity, that provokes the emergence of global oscillations from individually quiescent elements
in heterogeneous excitable media. This mechanism may be operating in the mammalian pancreas, where
excitableb cells, quiescent when isolated, are found to oscillate when coupled, despite the absence of a
pacemaker region.

PACS number~s!: 87.19.Nn, 87.23.Ge, 05.45.2a
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I. EXCITABLE MEDIA

An excitable element is defined by its response to a p
turbation: whereas a small disturbance causes merely
equally small response, a perturbation above a certain thr
old in amplitude excites a quiescent element that then de
back to quiescence during a refractory period in which it
unresponsive to further excitation. Such elements, w
coupled to their neighbors into an assembly, become an
citable medium @1#. These have attracted an enormo
amount of interest from different areas of science:
Belousov-Zhabotinsky reaction@2#, plankton populations@3#,
and the heart@4,5# are just a few well-known examples. O
cillations in excitable media such as the heart are produ
by forcing the medium from a pacemaker region; in oth
cases all individual elements of the medium oscillate wh
isolated: they are all pacemakers, and the medium is t
oscillatory rather than excitable. However, this need not n
essarily be so. In this paper I present a generic mechan
for the production of global oscillations; the introduction
diversity amongst the elements leads to the destabilizatio
the quiescent state of an excitable medium and to the em
gence of global oscillations even when each individual e
ment of the medium is quiescent in isolation. I argue that
instance of such behavior may be found in a physiolog
example of an excitable medium without a pacemaker:
pancreaticb cells of mammals.

In the mammalian pancreas are encountered struct
where insulin is produced. These, the islets of Langerha
consist of several thousand spherical cells clustered toge
and electrically connected via resistive gap junctions@6#. The
vast majority of these cells, those that produce insulin
response to the level of glucose in the blood, are of a t
known asb cells. In many mammals, including humans, t
electrical potentials ofb cells in an islet are found by exper
ment to cycle synchronously in slow oscillations term
bursts @7#. On the other hand, an individualb cell when
removed from the islet does not oscillate in this way@8#, but
rather is excitable. An islet of Langerhans, then, like t
heart, is a physiological excitable medium. But in the pa
creas, unlike in the heart, oscillations of the excitable m
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dium are not driven by pacemaking cells. The challenge is
understand the origin of these oscillations. Various deta
biophysical models of oscillations in networks of pancrea
b cells have been proposed, in which the importance of
heterogeneity of individual cells@9# and the emergence o
oscillatory behavior upon coupling nonoscillatory ce
@10,11# have been highlighted. Here I take a different a
proach in which I bring together these two ideas while si
plifying the physics as far as possible to produce a minim
qualitative model for the phenomenon. I demonstrate t
given diverse excitable elements, coupling these into a
erogeneous excitable medium can lead to the emergenc
oscillations: that diversity is a generic mechanism for t
emergence of global collective behavior not just inb cells,
but in any heterogeneous excitable medium.

II. van der POL –FITZHUGH –NAGUMO MODEL

To illustrate the mechanism, and having in mind its app
cation to pancreaticb cells, I take an electronic circuit mode
as a caricature of a physiological excitable medium and
representative of excitable media in general. Each elemen
the medium is a circuit shown in Fig. 1~a!. In physiological
terms, the capacitorC represents a cellular membran
charged byE, characterizing ion pumps, and drained by
nonlinear resistancenl acrossC. This nonlinear element, a
device with a range of negative resistance, could be a tun
diode, for example, and should have the cubici –v charac-
teristic of Fig. 1~b!. The inductanceL models the finite
switching time of the ion channels in the membrane. T
circuit is then mathematically described by the van der P

FIG. 1. An electronic excitable medium.~a! An element of the
medium: the circuit and~b! the i –v characteristic of the nonlinea
elementnl : the cubic functioni}v3/32v. ~c! Resistive~diffusive!
spatial coupling, illustrated for simplicity here in one dimension
1149 ©2000 The American Physical Society
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1150 PRE 62JULYAN H. E. CARTWRIGHT
FitzHugh–Nagumo equations@12–15#

ċ5g~h2c3/31c!, ~1a!

ḣ52g21~c1n1bh!. ~1b!

Variablesc andh are, respectively, proportional to the p
tential difference across the nonlinear devicenl and the cur-
rent through the supply; the parametern is proportional to
the potentialE, b to the resistanceR, andg to the quotient
L/C. The equations have an equilibrium point that is sta
for unu.J and unstable forunu,J, where

J5Ag22b
3g222g2b2b2

3g3
, ~2!

so a circuit element is oscillatory forunu,J and excitable
for unu.J in the vicinity of unu5J @16#. In physiological
terms, oscillatory behavior corresponds to burstingun
u,J), and excitability to silent and continuously activ
cells; one case beingn,2J and the othern.J.

Each of these elements is coupled to its nearest neigh
in one, two, or three dimensions to become an excitable
dium. The coupling in biological and chemical excitable m
dia is diffusive, though elastic excitable media that arise
electronics and rheology have also recently been consid
@17,18#. Either or both of Eqs.~1! may host a coupling term
depending on the medium being modeled. Here, to imita
cellular excitable medium, the circuits are coupled resistiv
as shown in Fig. 1~c!. This leads to a diffusive term in Eq
~1a!:

ċ5gFh2c3/31c1k(
i 51

n

~c i2c!G , ~3!

where thei ’s represent then neighboring elements, andk is
the coupling strength or diffusion coefficient. In the co
tinuum limit, the coupling term

k(
i 51

n

~c i2c!

becomes the Laplaciank¹2c; this is the classical van de
Pol–FitzHugh–Nagumo model of an excitable medium,
tensively analyzed in the excitable spiral-wave regime@16#.

III. HETEROGENEOUS EXCITABLE MEDIA

Consider now what happens if we introduce a diversity
parameter values for the different elements of the medi
The position of the stable equilibrium point for Eqs.~1! de-
pends on the parametersn andb, so if we introduce a sprea
of parameter values across the medium, we change the e
libria of individual elements and the coupling between th

k(
i

~c i2c!

will no longer be zero in the quiescent state. In such a h
erogeneous medium, the dynamics of each element ma
e
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analyzed to a good approximation by treating the influen
of the rest of the medium as a type of external signal«. This
is equivalent to setting

«5k(
i 51

n

~c i2c!

whence the extra term« may be removed from Eq.~3! by
renormalizingn, and the element is modeled by Eqs.~1!
with an effectiven, n85n2b«; the medium is now oscilla-
tory for un2b«u,J. Hence a small« can push an excitable
element withunu.J near to the excitable-oscillatory thresh
old over into the oscillatory regime. This diversity mech
nism is not specific to the van der Pol–FitzHugh–Nagu
model, but rather is generic; it can be applied to any hete
geneous excitable medium in which the position of equil
rium is parameter dependent and there is an oscillatory
gime reachable in the extended parameter space forme
an uncoupled element’s parameters plus the extra term«.

Let us examine the emergence of oscillations through
versity in a simple example using the van der Po
FitzHugh–Nagumo model. In Fig. 2, plotted~dotted line!
against couplingk, is the temporal standard deviation ofc j
for a sample elementj,

s t5A 1

t f2t i
(
t5t i

t f

c j
2~ t !2c̄ j

2 ~4!

for a heterogeneous van der Pol–FitzHugh–Nagumo
dium consisting of elements randomly assigned the par
eter valuesn50.76 or n520.76, together with the othe
parametersb50.5, g52. Both of these parameter sets o
their own, produce excitable rather than oscillatory eleme

FIG. 2. Dotted line: Temporal standard deviation ofc, s t @Eq.
~4!#, shows the emergence of oscillatory behavior from a hetero
neous excitable medium with increasing couplingk. Dashed line:
Standard deviation of timestmax of maxima of c, ss @Eq. ~6!#,
demonstrates increasing synchronization of the oscillations with
creasing couplingk. The numerical results are for a van der Po
FitzHugh–Nagumo medium withb50.5, andg52, with 434
34 elements randomly assignedn50.76 or n520.76, both of
which are individually parameter values for which the medium
excitable rather than oscillatory, and thus quiescent unless exc
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PRE 62 1151EMERGENT GLOBAL OSCILLATIONS IN . . .
which are quiescent without excitation, so atk50, s t is
zero. But in Fig. 2, we see that as the couplingk between
elements passes a threshold,s t, which is measuring the tem
poral activity of the medium, increases from zero, mean
that the medium has spontaneously begun to oscillate; di
sity has provoked the emergence of global oscillations fr
individually quiescent elements. In this example, each e
ment is connected in a cubic lattice with six neighbors. E
ments throughout the lattice are randomly assigned on
two parameter values:n50.76 or n520.76. On average
any element will find that half its neighbors share the sa
parameter value, and half have the other value. At qu
cence, the coupling between those with the same param
values is zero, while between those with different parame
values it is

«5k(
i 51

m

~c i2c!53kDc,

sincem53 is the average number of neighbors with diffe
ent parameter values. In the van der Pol–FitzHugh–Nagu
model, the change in the equilibrium value ofc is Dc
'2Dn. For our example,n560.76, which makesDn
52n. In this case, then, the new effectiven is

un8u5un2b«u5un~126bk!u. ~5!

We can see in Fig. 2 that the medium begins to oscill
whenk'0.06. For the numerical valuesb50.5, g52, unu
50.76, used in Fig. 2,un8u50.62 whenk50.06, which cor-
responds closely to the threshold for oscillation in a hom
geneous van der Pol–FitzHugh–Nagumo medium given
Eq. ~2! for these parameter values:unu5J531/96A7/2
50.60412.

To simplify the above analysis as far as possible, I ha
considered a heterogeneous medium with just two states.
diversity mechanism works in the same way in a medi
with a continuum of states, in which a proportion
elements—those whose uncoupled state falls within the
rameter range for autonomous oscillation—may be intrin
oscillators. However, such intrinsic oscillators do not act l
the pacemaker region of a driven medium. Scattered
domly throughout a quiescent medium, they are neither
ficient nor necessary for global oscillations. Whether or
such intrinsic oscillators are found in a heterogeneous
dium depends on whether an oscillatory regime exists wit
the parameter range of heterogeneity for an element w
the system coupling term« is zero. In the van der Pol–
FitzHugh–Nagumo model this corresponds to whether
inequality unu,J is satisfied without coupling. Forb cells,
the majority of experiments have found no evidence for
trinsic oscillations, and that isolated cells are exclusively
citable: either silent, or continuously active@19#.

IV. SYNCHRONOUS AND ASYNCHRONOUS
OSCILLATIONS

The diversity mechanism applies very naturally to phy
ological excitable media, since homogeneous cells ar
mathematical fiction. The underlying dynamics is such t
there is a threshold for a quiescent heterogeneous mediu
g
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achieve criticality and cross the excitable-oscillatory boun
ary. This demands sufficient connectivity between neighb
ing elements in terms of the number of connections~dimen-
sionality of the system! and the coupling strength~diffusion
coefficient!, together with sufficient heterogeneity betwe
elements. While the threshold-crossing mechanism of div
sity is generic, what happens on the other side of the thre
old once the medium has become oscillatory is not. In so
oscillatory media, synchronous global oscillations are sta
whereas in others these are unstable to spatial perturba
leading to the formation of propagating fronts or other spa
phenomena@20#. The standard deviation across the mediu
of times tmax(k) of maxima ofck for elementsk,

ss5A1

N (
k51

N

tmax
2 ~k!2 t̄ max

2 , ~6!

measures the spatial activity of the medium: the smaller
quantity, the greater the synchronization throughout the m
dium. In our example,ss plotted ~dashed line! against cou-
pling k in Fig. 2 indicates that at the minimum couplin
necessary for oscillatory behavior, the heterogeneous
dium oscillates with little synchronization. As the coupling
increased, however, the synchronization rapidly improv
shown by the steep decay in the standard deviation of
maxima at largerk.

If the synchronized state is an attractor for the homo
neous medium, then we might expect the behavior in
heterogeneous case to reflect this. Let us consider for a
ment the related area of synchronization, phase and
quency locking, or entrainment of coupled oscillators, a v
field of study initiated by Huygens with his observations
synchronization of two pendulum clocks coupled by a co
mon mounting@21–23#. Winfree @24# showed that synchro
nization emerges in a population of heterogeneous oscilla
as coupling exceeds a critical threshold, in a manner re
niscent of a thermodynamic phase transition. Following t
work Kuramoto et al. @25–27# developed his theoretica
model whose tractability helped to advance significantly
study of coupled heterogeneous oscillators. This underg
two transitions as the spread of natural frequencies is
duced, or the coupling is increased: first comes the onse
partial synchronization, which is followed by complete sy
chronization even with some residual heterogeneity am
the elements. More recently a physically realizable vers
of the Kuramoto model has been proposed: an array of
erogeneous Josephson junctions@28#. Strong coupling be-
tween oscillators allows modification of the amplitude
well as the phase of an oscillator, which can give rise
phenomena such as amplitude death@29–31# ~here however
we are in the weak-coupling regime!. Finally, if synchronous
global oscillations are unstable in the homogeneous case
addition of a certain amount of heterogeneity can even l
to an increase in synchronization, as studies with loca
coupled limit-cycle oscillators have found@32,33#.

We can obtain a theoretical understanding of synchro
zation in a homogeneous oscillatory medium by calculat
analytically the Floquet exponents that indicate the lin
stability of limit cycles against spatial perturbations. This
have done for the van der Pol–FitzHugh–Nagumo mode
Fig. 3, where I show a family of dispersion relations f
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1152 PRE 62JULYAN H. E. CARTWRIGHT
different values ofn. A positive value for the maximal Flo
quet exponent illustrates the destabilization of synchron
global oscillations of the medium for a range ofn for a
particular value ofb. In the case shown, for which, as in Fi
2, b50.5, g52, the dispersion relationlq is positive for a
range of wave numbers 0,q,qc for n values close to the
excitable-oscillatory threshold of the medium. For thesen
values, synchronous global oscillations are unstable to
turbations of wavelengths 1/qc,l,` when these wave
lengths fit within the system size. For all othern values in
the oscillatory regime, global synchronous oscillations of
homogeneous medium are linearly stable. This is dem
strated numerically in Fig. 4 in which the measures of ac
ity and spatial synchronizations t andss for a homogeneous
van der Pol–FitzHugh–Nagumo medium withb50.5, g
52, andk50.09 are plotted againstn. The dotted lines t
shows that the medium is oscillatory up ton50.604, then
excitable, as Eq.~2! demands. The dashed liness is positive
nearn50.6, showing that global oscillations are unstable
a range ofn values; outside this range the standard deviat
ss is zero, as the medium oscillates synchronously. The in
highlights the range ofn in which destabilization occurs.

In a homogeneous van der Pol–FitzHugh–Nagumo ex
able medium we have seen that there are parameter rang
which synchronous global oscillations are stable, and oth
in which they are not. The behavior of the homogeneous c
helps us now to understand the heterogeneous medium.
ure 2 displays poor synchronization of the medium imme
ately following the emergence of oscillations, which th
improves with increasingk: ss peaks, then declines rapidl
before leveling off. This can be seen as a combination of

FIG. 3. Dispersion relations show destabilization of synch
nous global oscillations in the van der Pol–FitzHugh–Nagu
model for a range ofn in the oscillatory regime. Hereb50.5, g
52, k50.09: shown are curves forn50.592 ~dotted!, n50.596
~dashed!, n50.600 ~solid!, andn50.604 ~dot dashed!. The maxi-
mal Floquet exponentlq gives the growth rate per period of
perturbation of wave numberq ~Ref. @17#!. For n50.596 andn
50.600, the dispersion relationlq as a function ofq is positive for
a range ofq, meaning that there is a set of wavelengths for wh
perturbations grow exponentially. Outside this range ofn values,
the dispersion relation is never positive, implying linear stability
synchronous global oscillations under perturbations of all wa
lengths.
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intrinsic dynamics of the van der Pol–FitzHugh–Nagum
medium together with the synchronizing effect of couplin
Upon the emergence of oscillations in the heterogeneous
dium, the effectiven, n8 @Eq. ~5!#, is within the range of
values near to the excitable-oscillatory transition for whi
synchronous oscillations are unstable. As the couplingk in-
creases,n8 drops below this range and the synchronizati
immediately improves. The further slower decrease inss is
due to the additional synchronizing effect of coupling.

What might be the relevance of the synchronization
global oscillations for theb cells of the pancreas? The pa
creas may be contrasted with another physiological excita
medium: the heart. While in the heart, synchronous osci
tions are vital to the survival of the organism—the unsy
chronized state of the fibrillating heart is fatal if not imm
diately resynchronized with an electric shock—it is n
obvious why this should be so forb cells. Although in hu-
mans and in mice the oscillations are synchronous, in o
mammals there is less evidence for this. While physiolog
may yet provide a biological rationale for synchronization
may be that it is not a physiological necessity but simply
byproduct of the emergence of oscillations: the pancreatib
cells of some species may be operating in a parameter ra
in which synchronous global oscillations are stable, while
others, less investigated up to now, spatial patterns may
found in the oscillations.

V. CONCLUSIONS

I have argued that diversity acts at a fundamental leve
the dynamics of heterogeneous excitable media to prod
global oscillations. Another related theme of study has s

-
o

f
-

FIG. 4. Dotted line: Temporal standard deviation ofc j , s t @Eq.
~4!#, illustrates the transition to oscillatory behavior in a homog
neous excitable medium with decreasingn. Dashed line: Standard
deviation of timestmax of maxima ofc, ss @Eq. ~6!#, shows the
destabilization of synchronous global oscillations in a range on
just above the excitable-oscillatory threshold. The inset highlig
the narrow range 0.588,n,0.608 in which the destabilization oc
curs. Numerical results are for a van der Pol–FitzHugh–Nagu
medium with 43434 elements withb50.5, g52, andk50.09.
From Eq. ~2!, the medium is oscillatory for unu,J
50.060412 . . . .
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PRE 62 1153EMERGENT GLOBAL OSCILLATIONS IN . . .
jected excitable systems to various types of forcing. A pe
odically forced van der Pol–FitzHugh–Nagumo eleme
shows behavior similar to a driven oscillator: phase locki
quasiperiodicity, period doubling, and chaos@34#. A quies-
cent excitable element may be excited by driving with
combination of a periodic subthreshold signal plus noise@35#
or with an aperiodic subthreshold signal plus noise@36#, phe-
nomena which have been termed stochastic resonanc
with noise alone@37#, when the phenomenon has be
termed coherence resonance. Here, we have seen that
without any external forcing, either periodic or stochastic
heterogeneous excitable medium can become self-excite
produce global oscillations.

To what extent is this general analysis applicable to p
creaticb cells?b cells are diffusively coupled excitable e
ements, although more complicated than van der P
FitzHugh–Nagumo elements, with more internal variab
and parameters. Their heterogeneity has been made ma
in studies demonstrating differing rates amongb cells of
insulin synthesis and secretion@38–42#, of glucose metabo-
lism @43#, of changes in calcium concentration@44,45#, and
of changes in electrical activity@46#. Physiologists have sus
a
,
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s

.

,

i-
t
,

or

ven
a
to

-

l–
s
fest

pected the importance of this variability@47#. b cell oscilla-
tions, or bursts, are more complex than the simple osc
tions of a van der Pol–FitzHugh–Nagumo–type relaxat
oscillator, but the basic mechanism that diversity provok
the emergence of oscillations, remains the same and prov
a qualitative explanation for the emergence of global os
lations in theb cells of the mammalian pancreas. Heterog
neity is the norm in biological excitable media, so there m
well be other instances awaiting discovery of this mechan
in operation.
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